

DPP No. 45

Total Marks: 31

Max. Time: 32 min.

Topics : Circular Motion, Center of Mass, Newton's Law of Motion, Work, Power and Energy

Type of Questions		M.M., Min.
Single choice Objective ('–1' negative marking) Q.1 to Q.6	(3 marks, 3 min.)	[18, 18]
Subjective Questions ('–1' negative marking) Q.7	(4 marks, 5 min.)	[4, 5]
Comprehension ('–1' negative marking) Q.8 to Q.10	(3 marks, 3 min.)	[9, 9]

1. A circular curve of a highway is designed for traffic moving at 72 km/h. If the radius of the curved path is 100 m, the correct angle of banking of the road should be given by :

(B) $\tan^{-1} \frac{3}{-1}$ (A) $\tan^{-1} \frac{2}{-1}$ (C) $\tan^{-1}\frac{2}{5}$ (D) $\tan^{-1} \frac{1}{-1}$

2. Two semicircular rings of linear mass densities λ and 2λ and of radius 'R' each are joined to form a complete ring. The distance of the center of the mass of complete ring from its geometrical centre is :

(A)
$$\frac{3R}{8\pi}$$
 (B) $\frac{2R}{3\pi}$ (C) $\frac{3R}{4\pi}$ (D) none of these

3. The centre of mass of a non uniform rod of length L whose mass per unit length λ varies as

 $\lambda = k.x$ where k is a constant & x is the distance of any point on rod from its one end, is (from the

same end)

$$(A) - L$$
 $(B) L$ $(C) (D) -$

4. A bead of mass m is located on a parabolic wire with its axis vertical and vertex at the origin as shown in figure and whose equation is $x^2 = 4ay$. The wire frame is fixed in vertical plane and the bead can slide on it without friction. The bead is released from the point y = 4a on the wire frame from rest. The tangential acceleration of the bead when it reaches the position given by y = a is :

5. A uniform thin rod is bent in the form of closed loop ABCDEFA as shown in the figure. The y-coordinate of the centre of mass of the system is

(D) Zero

Get More Learning Materials Here :

(A) $\frac{2r}{\pi}$

6. A particle of mass m is fixed to one end of a light spring of force constant k and unstretched length ℓ . The system is rotated about the other end of the spring with an angular speed ω ($\omega < \sqrt{\frac{k}{m}}$) in gravity

free space. The increase in length of the spring is :

(A)
$$\frac{m\omega^2 \ell}{k}$$
 (B) $\frac{m\omega^2 \ell}{k - m\omega^2}$ (C) $\frac{m\omega^2 \ell}{k + m\omega^2}$ (D) none of these

7. A body of mass m was slowly hauled up the hill as shown in figure by a force F which at each point was directed along a tangent to the trajectory. Find the work performed by this force, if the height of the hill is h, the length of its base ℓ , and the coefficient of friction k.

COMPREHENSION

One end of massless inextensible string of length ℓ is fixed and other end is tied to a small ball of mass m. The ball is performing a circular motion in vertical plane. At the lowest position, speed of ball is $\sqrt{20g\ell}$. Neglect any other forces on the ball except tension and gravitational force. Acceleration due to gravity is g.

8. Motion of ball is in nature of

- (A) circular motion with constant speed
- (B) circular motion with variable speed
- (C) circular motion with constant angular acceleration about centre of the circle.
- (D) none of these

9.	At the highest position of ball, tangential acceleration of ball is -			
	(A) 0	(B) g	(C) 5 g	(D) 16 g

10.During circular motion, minimum value of tension in the string -
(A) zero(B) mg(C) 10 mg(D) 15 mg

Answers Key

DPP NO. - 45

- **1.** (C) **2.** (B) **3.** (A) **4.** (C) **5.** (B) **6.** (B) **7.** $A = mg(h + k\ell)$ **8.** (B)
- 9. (A) 10. (D)

Get More Learning Materials Here : 💶

Hint & Solutions

DPP NO. - 45

1. V = $\sqrt{gR \tan \theta} \Rightarrow (20)^2 = 10 \times 100 \times \tan \theta$

 $\Rightarrow \tan \theta = \frac{4}{10} = \frac{2}{5}$ $\Rightarrow \theta = \tan^{-1} (2/5) \quad \text{Ans: None}$

2. Let the two half rings be placed in left and right of yaxis with centre as shown in figure.

Then the coordinate of centre of mass $\stackrel{\vee}{\beta^{f}}$ left and right

- half rings are $\left(-\frac{2R}{\pi}, 0\right)$ and $\left(\frac{2R}{\pi}, 0\right)$.
- \therefore x-coordinates of centre of mass of comple ring is

$$\frac{m\left(-\frac{2R}{\pi}\right)+2m\left(\frac{2R}{\pi}\right)}{3m} = \frac{2R}{3\pi}$$

$$\therefore \quad \mathbf{x}_{cm} = \frac{\int_{0}^{L} \frac{\mathbf{K}}{\mathbf{L}} \mathbf{x}^{2} d\mathbf{x} \cdot \mathbf{x}}{\int_{0}^{L} \frac{\mathbf{K}}{\mathbf{L}} \mathbf{x}^{2} d\mathbf{x}} = \frac{\frac{\mathbf{x}^{4}}{4} \Big|_{0}^{L}}{\frac{\mathbf{x}^{3}}{3} \Big|_{0}^{L}}$$

 $=\frac{3}{4}$ L

4. $x^2 = 4ay$ Differentiating w.r.t. y, we get

$$\frac{dy}{dx} = \frac{x}{2a}$$

$$\therefore At (2a, a), \frac{dy}{dx} = 1$$

Get More Learning Materials Here :

🕀 www.studentbro.in

⇒ hence $\theta = 45^{\circ}$ the component of weight along tangential direction is mg sin θ .

5. The centre of mass of semicircular ring is at a

distance
$$\frac{2r}{\pi}$$
 from its centre. (Let λ = mass/length)

$$\therefore \mathbf{Y}_{cm} = \frac{\lambda \pi \mathbf{r} \times \frac{2\mathbf{r}}{\pi} - \lambda \times 2\pi \mathbf{r} \times \frac{4\mathbf{r}}{\pi}}{\lambda \pi \mathbf{r} + \lambda \mathbf{r} + \lambda \mathbf{r} + \lambda \times 2\pi \mathbf{r}} = -\frac{6\mathbf{r}}{3\pi + 2}$$

6. $kx \xleftarrow{m} m\omega^{2}(\ell + x)$ $kx = m\omega^{2} \ell + m\omega^{2} x$ $(k - m\omega^{2}) x = m\omega^{2} \ell$

$$x = \frac{m\omega^2 \ell}{k - m\omega^2} \quad \text{Ans. (B)}$$

- 7. For slowly havled $\Delta K = 0$ $W_F + W_g + W_f = \Delta K$ $W_g = -mgh$ $W_f = -mgk\ell$ $W_F = mgh + mgk\ell = mg\ell (h + k\ell).$
- **8.** As speed of ball is variable, so motion is non uniform circular motion.
- **9.** At the highest position of ball, tangential acceleration of ball is zero,
- 10. Tension in the string is minimum when ball is at the

highest position. By conservation of energy $\frac{1}{2}$ mv²+

mg (2
$$\ell$$
) = $\frac{1}{2}$ m(20 g ℓ)

 $v^2 = 16 g\ell$ where v is the velocity of ball at the highest point.

So T + mg =
$$\frac{mv^2}{\ell}$$

$$T = \frac{m16g\ell}{\ell} - mg = 15 mg$$

Get More Learning Materials Here : 💻

R www.studentbro.in